
Supplementary Material

A.1 Technical discussion about estimation of indirect and direct

effects

There are several versions of direct and indirect effects. We present definitions using counter-

factual terminology, using potential values of the outcome Y (x,m), representing the outcome

which would be observed if the risk factor (or exposure) X were set (by intervention) to x

and M were set to m, and potential values of the mediator M(x), the value taken by the me-

diator if X were set to x. All effects are given on the difference scale; with a binary outcome,

effects on a relative risk or odds ratio scale can also be defined, but the decomposition is

more complex [VanderWeele and Vansteelandt, 2010; Kaufman, 2010]. This text is adapted

from Burgess et al. [2015].

A total effect is defined as the effect of a change in the exposure from, say, X = x to

X = x + 1. It comprises the effects of the change in the exposure, and the change in the

mediator as a result of the change in the exposure:

TE(x, x+ 1) = Y (x+ 1,M(x+ 1))− Y (x,M(x)) (A1)

A controlled direct effect is defined as the effect of a change in the exposure keeping the

mediator fixed at a given level, say M = m [Robins and Greenland, 1992; Pearl, 2001]. The

controlled direct effect may depend on the choice of m:

CDE(m; x, x+ 1) = Y (x+ 1,m)− Y (x,m) (A2)

A natural direct effect is defined as the effect of a change in the exposure with the

mediator fixed at the level it would naturally take if the exposure were fixed at a given level,

say X = x:

NDE(x; x, x+ 1) = Y (x+ 1,M(x))− Y (x,M(x)) (A3)

A natural indirect effect is defined as the effect of a change in the mediator from the

value it would naturally take if the exposure were unchanged to the level it would take if the

exposure were changed. The exposure itself is kept fixed at a given level, say X = x+ 1:

NIE(x+ 1; x, x+ 1) = Y (x+ 1,M(x+ 1))− Y (x+ 1,M(x)) (A4)
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In the linear case, the natural direct and indirect effects represent a decomposition of the

total effect, in that TE(x, x+1) = NDE(x; x, x+1)+NIE(x+1; x, x+1) (or alternatively

TE(x, x+ 1) = NDE(x+ 1; x, x+ 1) +NIE(x; x, x+ 1)). Under the condition:

Y (x+ 1,m1)− Y (x,m1) = Y (x+ 1,m2)− Y (x,m2) (A5)

for all values of M = m1,m2, and for all individuals, the controlled direct effect is equal

to the natural direct effect [Robins and Greenland, 1992]. The natural direct effect has a

clearer intuitive interpretation as a measure of mediation than the controlled direct effect.

However, it is not possible to conceive of an experiment which would produce the natural

direct effect, as the quantity requires the outcome if the exposure were set at two different

levels (for example, in NDE(x; x, x + 1), Y (x + 1,M(x)) requires X = x + 1 for Y , but

X = x for M). This is known as a “cross-world” quantity, as setting the exposure to two

different values is only possible in two different worlds [Richardson and Robins, 2013].

As we argue in Burgess et al. [2015], we would regard the controlled direct effect as the

quantity that is targeted by mediation analysis with instrumental variables, as this is what

would be obtained if we were to intervene separately on the risk factor and mediator. As we

assume that all relationships between variables are linear and there is no effect heterogeneity,

the natural and controlled direct effects are equal, and hence we refer to a ‘direct effect’

throughout this manuscript without further qualification.
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A.2 Software code

We provide R code to implement the methods discussed in this paper. The associations of

the genetic variants with the risk factor are denoted betaXG with standard errors sebetaXG.

The associations of the genetic variants with the mediator are denoted betaMG with standard

errors sebetaMG. The associations of the genetic variants with the outcome are denoted

betaYG with standard errors sebetaYG. When variables are continuous, these associations

are typically estimated using linear regression.

Estimation of the total causal effect using summarized data:

total.effect = lm(betaYG ~ betaXG - 1, weights = sebetaYG^-2)$coef[1]

resid.std.error = summary(lm(betaYG ~ betaXG - 1, weights = sebetaYG^-2))$sigma

se.total.effect = summary(lm(betaYG ~ betaXG - 1, weights = sebetaYG^-2))$coef[1,2]

ci.upper.total = max(total.effect + qnorm(0.975) * se.total.effect / resid.std.error,

total.effect + qt(0.975, df=length(betaXG)-1) * se.total.effect)

ci.lower.total = min(total.effect - qnorm(0.975) * se.total.effect / resid.std.error,

total.effect - qt(0.975, df=length(betaXG)-1) * se.total.effect)

The weighted regression model for estimating the total effect is equivalent to a meta-

analysis of the variant-specific causal estimates. Setting the residual standard error as 1 is

equivalent to a fixed-effect assumption in the meta-analysis formula [Thompson and Sharp,

1999]. If there is no heterogeneity between the causal estimates identified by the individual

variants, then the residual standard error should tend to 1 asymptotically. If the estimate of

the residual standard error is greater than 1 (overdispersion), then we do not correct for this;

this is equivalent to a (multiplicative) random-effects meta-analysis [Burgess and Thompson,

2017]. This would occur if different genetic variants identify different causal estimates (say,

different variants influence the risk factor via different mechanisms). However, there is no

biological rationale for underdispersion (residual standard error estimate is less than 1).

Hence, we correct for underdispersion by dividing the standard error for the total effect by

the residual standard error.

The multiplicative random-effects analysis fits the following model, with φ representing

the residual standard error:

β̂Y j = θT β̂Xj + ǫTj, ǫTj ∼ N (0, φ2 se(β̂Y j)
2). (A6)

For a fixed-effect analysis, the residual standard error is assumed to be known; hence

it is appropriate to use a normal distribution for inferences. For a random-effect analysis,

as the residual standard error (the overdispersion parameter φ) is estimated rather than
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known, a t-distribution should be used for making inferences. In the confidence intervals,

we take the upper bound to be the maximum of the bounds based on the fixed-effect and

random-effect analyses; similarly for the lower bound as the minimum. This ensures that

confidence intervals are no wider than they would be from a fixed-effect analysis, but that

under-precision is not doubly penalized (by setting the residual standard error to be 1, and

then using a t-distribution for inferences).

Estimation of the direct causal effect using summarized data:

direct.effect = lm(betaYG ~ betaXG + betaMG - 1, weights = sebetaYG^-2)$coef[1]

se.direct.effect = summary(lm(betaYG ~ betaXG + betaMG - 1, weights = sebetaYG^-2))$coef[1,2]/

min(summary(lm(betaYG ~ betaXG + betaMG - 1, weights = sebetaYG^-2))$sigma, 1)

ci.upper.direct = max(direct.effect + qnorm(0.975) * se.direct.effect / resid.std.error,

direct.effect + qt(0.975, df=length(betaXG)-1) * se.direct.effect)

ci.lower.direct = min(direct.effect - qnorm(0.975) * se.direct.effect / resid.std.error,

direct.effect - qt(0.975, df=length(betaXG)-1) * se.direct.effect)

As the additional term in the regression analysis for the estimate of the direct effect

lowers the residual standard error, we take the estimated residual standard error from the

regression model for the total causal effect. This is because we want this term to represent

overdispersion in the genetic associations with the outcome, not the residual associations

after adjustment. Hence the t-distribution for making inferences is still on J − 1 degrees of

freedom.

If the outcome is binary, then genetic associations with the outcome are typically esti-

mated using logistic regression. Beta-coefficients from logistic regression can be used in the

estimation of direct and indirect effects, but the precise magnitude of effect estimates should

not be over-interpreted, as odds ratios suffer from non-collapsibility when the rare disease

assumption is not applicable (instrumental variable estimates represent population-averaged

causal effects, which are not the same as subject-specific causal effects on the odds ratio

scale, hence the indirect and direct effects may not precisely sum to give the total effect).

Therefore in the applied example in this paper, we do not report an indirect effect.

With correlated variants, this correlation can be accounted for by generalized weighted

linear regression [Burgess et al., 2016]. We assume that rho is the matrix of correlations

between genetic variants:

Omega = sebetaYG%o%sebetaYG*rho

total.effect.correl = solve(t(betaXG)%*%solve(Omega)%*%betaXG)*t(betaXG)%*%solve(Omega)%*%betaYG

se.total.effect.fixed = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))

resid.total = betaYG-total.effect.correl*betaXG

se.total.effect.random = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))*
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max(sqrt(t(resid.total)%*%solve(Omega)%*%resid.total/(length(betaXG)-1)),1)

direct.effect.correl = solve(t(cbind(betaXG, betaMG))%*%solve(Omega)%*%

cbind(betaXG, betaMG))%*%t(cbind(betaXG, betaMG))%*%solve(Omega)%*%betaYG

se.direct.effect.fixed = sqrt(solve(t(cbind(betaXG, betaMG))%*%solve(Omega)%*%cbind(betaXG, betaMG))[1,1])

resid.direct = betaYG-direct.effect.correl[1]*betaXG-direct.effect.correl[2]*betaMG

se.direct.effect.random = sqrt(solve(t(cbind(betaXG, betaMG))%*%solve(Omega)%*%cbind(betaXG, betaMG))[1,1])*

max(sqrt(t(resid.direct)%*%solve(Omega)%*%resid.direct/(length(betaXG)-2)),1)

Standard errors are given corresponding to both fixed-effect and random-effects assump-

tions.

Two different approaches for calculating the indirect effect are provided below. We recall

that the indirect effect only has a clear interpretation when all variables are continuous and

all relationships are linear. The linear assumptions are particularly crucial, as the indirect

effect is calculated based on the total effect minus the direct effect (difference method) or

the effect of the risk factor on the mediator multiplied by the effect of the mediator on the

outcome (product method).

indirect.effect.difference = total.effect - direct.effect

se.indirect.effect.difference = sqrt(se.total.effect^2 + se.direct.effect^2)

indirect.product.1 = summary(lm(betaYG~betaXG+betaMG-1, weights = sebetaYG^-2))$coef[2]

se.indirect.product.1 = summary(lm(betaYG~betaXG+betaMG-1, weights = sebetaYG^-2))$coef[2,2]/

min(summary(lm(betaYG~betaXG-1, weights = sebetaYG^-2))$sigma, 1)

indirect.product.2 = summary(lm(betaMG~betaXG-1, weights = sebetaMG^-2))$coef[1]

se.indirect.product.2 = summary(lm(betaMG~betaXG-1, weights = sebetaMG^-2))$coef[1,2]/

min(summary(lm(betaMG~betaXG-1, weights = sebetaMG^-2))$sigma, 1)

indirect.boot = NULL; straps = 1000

for (k in 1:straps) {

indirect.boot[k] = rnorm(1, indirect.product.1, se.indirect.product.1)*

rnorm(1, indirect.product.2, se.indirect.product.2)

}

indirect.effect.product = indirect.product.1 * indirect.product.2

lower.indirect.effect.product = sort(indirect.boot)[0.025*straps+1]

upper.indirect.effect.product = sort(indirect.boot)[0.975*straps]

These two methods for calculating and performing inferences on the indirect effect are

compared in the simulation study in Supplementary Material A.3.
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A.3 Additional details of simulation study

For the simulation study in the paper, the risk factor X was generated as:

Xi =
10
∑

j=1

αjGij + Ui + ǫXi

where Gij is the number of variant alleles for genetic variant j, U is a confounder, ǫXi is

an independent error term. The number of variant alleles for each variant was drawn from

a binomial distribution with 2 trials and probability 0.3, representing a single nucleotide

polymorphism with minor allele frequency 0.3. The genetic effects on the risk factor αj

were generated from a normal distribution with mean 0.2 and variance 0.12. The variants

in total explained on average 5.1% of the variance in the risk factor, corresponding to an

average F statistic of 53.5 with a sample size of 10 000. The confounder U and all error terms

(ǫX , ǫM , ǫY ) were drawn from independent standard normal distributions. The mediator M

was generated as:

Mi = θ1Xi + Ui + ǫMi +
10
∑

j=1

φjGij

where θ1 is the causal effect of X on M , and φj are direct effects of the genetic variants on

the mediator. These effects are included in the simulation model to ensure that the direct

effect is identified, as otherwise genetic associations with the risk factor and mediator would

be perfectly correlated for large sample sizes, leading to unstable estimates of the direct

effect. The φj parameters were generated from a normal distribution with mean zero and

variance 0.12. The outcome Y was generated as:

Yi = θ2Xi + θ3Mi + Ui + ǫY i

where θ2 is the direct effect of X on Y , and θ3 is the effect of M on Y . The indirect effect of

X on Y via M is θ1θ3, and the total effect of X on Y is θ2 + θ1θ3. In total, 10 000 simulated

datasets were generated for each choice of parameter values.

25



Inferences for the indirect effect

We explored two different approaches to make inferences for the indirect effect. Briefly, a

number of different approaches have been proposed in the literature, including resampling

(bootstrap) methods and approaches based on the indirect effect being the product of the

effect of X onM and the effect ofM on Y [MacKinnon et al., 2004]. As we only have summa-

rized data, resampling methods are limited in their applicability here, as we cannot explore

genetic associations with the risk factor, mediator, or outcome derived from bootstrapped

samples. While parametric bootstrap approaches appear attractive, correlations between

the genetic associations with the risk factor and the mediator are typically unknown. It

would be crucial to correctly specify these correlations in order to estimate the direct effect

of X on Y or the effect of M on Y . Hence we consider difference and product methods for

estimating the indirect effect.

The difference indirect effect is calculated as the total effect minus the direct effect, with

the standard error of the indirect effect as the square root of the sum of the squared standard

errors for the total effect and the direct effect:

θ̂I1 = θ̂T − θ̂D

se(θ̂I1) =

√

se(θ̂T )2 + se(θ̂D)2.

Confidence intervals for the difference indirect effect are calculated using a normal approxi-

mation: lower and upper bounds of the 95% confidence interval are θ̂I1 ± 1.96× se(θ̂I1).

For the product indirect effect, we first estimate the effect of X on M (θA):

β̂Mj = θAβ̂Xj + ǫAj, ǫAj ∼ N (0, se(β̂Mj)
2)

and then estimate the effect of M on Y (θM) using the same regression model as used to

estimate the direct effect:

β̂Y j = θDβ̂Xj + θM β̂Mj + ǫDj, ǫDj ∼ N (0, se(β̂Y j)
2).

The product indirect effect estimate is calculated as:

θ̂I2 = θ̂A × θ̂M .
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Confidence intervals for the product indirect effect are obtained by a Monte Carlo method:

we calculate the standard errors for θ̂A and θ̂M using similar formulae as for the total effect

and direct effect of X on Y respectively. We then obtain a Monte Carlo distribution by

drawing from normal distributions with mean θ̂A and variance se(θ̂A)
2 and with θ̂M and

variance se(θ̂M)2, and multiplying the results. This process was repeated 1000 times, and

the 2.5th and 97.5th percentiles of this Monte Carlo distribution were taken as the lower

and upper bounds of the 95% confidence interval.

Supplementary Table A1 provides means and standard deviations of estimates of the

indirect effect across the same simulated datasets as in the main simulation study of the

paper, coverage of the 95% confidence interval (that is, the proportion of confidence intervals

including the true value of the indirect effect), empirical power to detect a non-null indirect

effect (that is, the proportion of confidence intervals excluding zero), and median width of the

95% confidence interval. We see that means and standard deviations of estimates are almost

identical between the two methods. Estimates are close to unbiased, with some evidence of

weak instrument bias. Confidence intervals from the difference method are on average wider,

and have better coverage and Type 1 error properties (coverage close to 95% in all scenarios

except Scenario 6 – see below). Confidence intervals from the product method have worse

coverage properties, but greater power. It may be that the poor coverage properties are due

to weak instrument bias, however coverage is even underestimated in Scenario 5 when the

true indirect effect is zero. Of note is Scenario 6, in which the mediator has no effect on

the outcome. In this scenario, confidence intervals for the difference method are much wider

than those from the product method, and coverage rates are much higher than the nominal

95% level. The reason for this is that the correlation between estimates of the total and

direct effects is ignored in the calculation of the standard error. This is not unreasonable in

the other scenarios, where the correlations across the 10 000 simulations are around 0.2 to

0.3. However in Scenario 6, this correlation is 0.76, leading to highly conservative inferences.

We note that if the estimates of total and direct effect are positively correlated (as in all

the simulation scenarios), then failure to account for this correlation leads to conservative

estimates of the difference standard error.

Overall, on this basis of this simulation study, the difference method seems to be the

preferable approach for constructing confidence intervals as it does not suffer from inflated

Type 1 error rates.
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Indirect Difference method Product method
θ1 θ2 θ3 effect Mean SD Coverage Power CI width Mean SD Coverage Power CI width
0.3 0.2 1 0.3 0.324 0.163 95.1 50.1 0.650 0.324 0.163 92.5 57.1 0.606
0.3 0.2 −1 −0.3 −0.295 0.150 94.8 48.4 0.601 −0.295 0.150 92.5 57.1 0.555
0.3 −0.2 1 0.3 0.322 0.166 94.7 49.7 0.648 0.322 0.166 91.9 57.3 0.604
−0.3 −0.2 1 −0.3 −0.304 0.163 94.7 45.2 0.644 −0.304 0.164 92.6 52.6 0.601
0.0 0.2 1 0.0 0.008 0.160 94.8 5.2 0.634 0.008 0.160 91.8 8.2 0.591
0.3 0.2 0 0.0 0.014 0.038 99.5 0.5 0.265 0.014 0.038 96.4 3.4 0.172
0.3 0.0 1 0.3 0.323 0.164 94.7 49.5 0.646 0.324 0.164 92.5 56.9 0.602
−0.2 0.2 1 −0.2 −0.198 0.161 94.7 22.6 0.638 −0.199 0.161 92.1 29.3 0.594

Supplementary Table A1: Mean, standard deviation (SD), coverage of 95% confidence interval (%),
empirical power (%), and median width of the 95% confidence interval (CI) for Mendelian randomization
estimates of the indirect effect from two methods across 10 000 simulated datasets for different mediation
scenarios (X = risk factor, M = mediator, Y = outcome).
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Varying the degree of heterogeneity

We also experimented with different values of the variance of the φj parameters in the

data-generating model. Results are shown in Supplementary Table A2. When there was

low heterogeneity, estimates were more variable and bias from weak instruments was more

pronounced. This is expected, as the associations with the risk factor and mediator are

increasingly collinear as the heterogeneity decreases. To demonstrate that the bias is an

artifact of limited sample size (so called ‘weak instrument bias’), we repeated the simulation

with 100 000 participants (100 iterations per scenario only). As expected, bias did not

decrease when there was no heterogeneity, as the collinearity problem does not disappear

with increasing sample sizes in this case. However, in all other cases, increasing the sample

size decreased bias sharply.

Sample size: 10 000
θ1 θ2 θ3 var(φ) = 0 var(φ) = 0.052 var(φ) = 0.12 var(φ) = 0.22

0.3 0.2 1 0.054 (0.110) 0.165 (0.077) 0.196 (0.055) 0.203 (0.050)
0.3 0.2 −1 0.052 (0.115) 0.165 (0.076) 0.195 (0.056) 0.204 (0.050)
0.3 −0.2 1 −0.343 (0.113) −0.235 (0.071) −0.205 (0.059) −0.194 (0.050)
−0.3 −0.2 1 −0.049 (0.101) −0.153 (0.073) −0.181 (0.058) −0.187 (0.052)
0.0 0.2 1 0.205 (0.041) 0.207 (0.048) 0.208 (0.048) 0.207 (0.048)
0.3 0.2 0 0.053 (0.106) 0.168 (0.074) 0.196 (0.058) 0.203 (0.053)
0.3 0.0 1 −0.146 (0.113) −0.035 (0.071) −0.004 (0.059) 0.003 (0.050)
−0.2 0.2 1 0.302 (0.076) 0.235 (0.057) 0.213 (0.050) 0.210 (0.048)

Sample size: 100 000
θ1 θ2 θ3 var(φ) = 0 var(φ) = 0.052 var(φ) = 0.12 var(φ) = 0.22

0.3 0.2 1 0.053 (0.092) 0.191 (0.027) 0.200 (0.019) 0.201 (0.016)
0.3 0.2 −1 0.051 (0.114) 0.194 (0.030) 0.195 (0.019) 0.202 (0.016)
0.3 −0.2 1 −0.341 (0.098) −0.206 (0.028) −0.197 (0.016) −0.198 (0.015)
−0.3 −0.2 1 −0.049 (0.087) −0.191 (0.027) −0.197 (0.020) −0.202 (0.017)
0.0 0.2 1 0.199 (0.012) 0.202 (0.016) 0.199 (0.016) 0.200 (0.016)
0.3 0.2 0 0.055 (0.106) 0.196 (0.027) 0.199 (0.019) 0.200 (0.017)
0.3 0.0 1 −0.136 (0.099) −0.005 (0.027) 0.003 (0.018) 0.000 (0.017)
−0.2 0.2 1 0.296 (0.072) 0.206 (0.018) 0.200 (0.018) 0.200 (0.016)

Supplementary Table A2: Mean (standard deviation) of multivariable Mendelian random-
ization estimates of the direct effect θ2 across 10 000 simulated datasets (100 datasets for
larger sample size) for different values of the variance of the heterogeneity parameters φ.
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A.4 Additional simulation scenario: bidirectional causal effects

between risk factor and mediator

In the applied example, it may be that as well as the risk factor having a causal effect on

the mediator, that the mediator also has a causal effect on the risk factor. To consider this

scenario, we simulate causal effects in both directions and consider Mendelian randomization

and multivariable Mendelian randomization estimates. The data-generating model is:

X0i =
10
∑

j=1

αjGij + Ui + ǫXi

Mi = θ1X0i + Ui + ǫMi +
10
∑

j=1

φjGij

X1i = X0i ±Mi

Yi = θ2X1i + θ3Mi + Ui + ǫY i

This is the same as the previous data-generating model, except that we first generate X0i and

then generate a second risk factor variable X1i that has a causal effect from the mediator.

These could be thought of as values of the risk factor at different time points. We consider

cases where the mediator has a positive and a negative effect on the risk factor. All other

aspects of this simulation are the same as the original.

Results are shown in Supplementary Table A3. The total effect varies depending on

whether the effect of the mediator on the risk factor is positive or negative, and is not simply

an estimate of θ2 + θ1θ3 (as there are additional components of the total effect via the effect

of the mediator on the risk factor). However, the direct effect as estimated by multivariable

Mendelian randomization is invariant to any bidirectional effect. Therefore the direct effect

of age at menarche on breast cancer risk not via BMI can be estimated using multivariable

Mendelian randomization whether or not there is a bidirectional relationship between age at

menarche and BMI.
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Positive effect Negative effect
θ1 θ2 θ3 Univariable Multivariable Univariable Multivariable
0.3 0.2 1 0.525 0.195 0.222 0.195
0.3 0.2 −1 −0.103 0.194 0.173 0.194
0.3 −0.2 1 0.123 −0.204 −0.169 −0.204
−0.3 −0.2 1 −0.195 −0.180 −0.504 −0.180
0.0 0.2 1 0.381 0.208 0.045 0.208
0.3 0.2 0 0.209 0.195 0.197 0.195
0.3 0.0 1 0.323 −0.005 0.017 −0.005
−0.2 0.2 1 0.273 0.217 −0.060 0.217

Supplementary Table A3: Mean of univariable and multivariable Mendelian randomization
estimates across 10 000 simulated datasets for different mediation scenarios with positive and
negative bidirectional effect of the mediator on the risk factor.
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